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Sine Function Computation of 
the Eigenvalues of Sturm-Liouville Problems 

NORMAN EGGERT, MARY JARRATT, AND JOHN LUND* 

A collocation scheme using sine basis functions is developed to approximate the eigenvalues 
of regular and singular Sturm-Liouville boundary value problems. The error in the 
approximation of the eigenvalues is shown to converge at the rate exp( --r fi) (a >O), 
where 2N+ 1 basis elements in the collocation scheme are used. A number of test examples 
are included (both finite and infinite interval boundary value problems) to indicate the 
accuracy and demonstrate the implementation of the method. 1 19x1 Acadrmx Press. Inc 

I. INTR~OUCTI~N 

In [7] a sine-collocation method was developed to approximate the eigenvalues 
of the Sturm- Liouville boundary value problem 

h(x) = -u”(s) + q(s) u(x) = Q(x) u(.v), u < s < h, 

U(U) = u(h) = 0 
(1.1) 

in the case that a = 0 and h = CC. The potential function q is assumed nonnegative 
and the weight function p is taken to be positive. While the method of that paper 
handled a wide class of singular boundary value problems (the prototype being the 
radial Schrodinger equation), the discrete system of the method in [7] led to a 
nonsymmetric matrix eigenvalue problem. The work of this paper is a refjnement of 
the above mentioned work in the sense that the discrete system for the sinc- 
collocation method of the present paper is symmetric. While the main emphasis of 
this paper is again the (0, “c) boundary value problem, there is no distinction 
between the error estimate for the eigenvalue error bound in the case when u and h 
are finite and the method is carried out for an arbitrary interval. 

Akin to finite difference or finite element approximations (e.g., [lo] or [ 111) the 
method of the present paper generates a symmetric positive definite matrix A for 
the approximation of the eigenvalues of (1.1). In contrast to a banded matrix for 
the discrete system associated with polynomial based methods, the matrix A is full. 
However, the rate of convergence of the present method ((exp( --cx ,/%) (c( > 0) 
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where 2N + 1 basis elements are used) allows one to take smaller discrete systems 
for equivalent accuracy. Moreover, this exponential rate of convergence is main- 
tained whether or not the eigensolutions of ( 1.1) are singular. It should be pointed 
out that, depending on the behavior of p and q in (l.l), other methods for the 
approximation of I are available which also lead to exponential rates of con- 
vergence. Indeed, the class of spectral methods [S] yield a technique which for 
problems (1 .l ) with analytic solutions converge at a rate faster than any power of 
l/N where N basis elements are used. Another method for the computation of jti in 
(1.1) can be based on the work in [2]. In this work the mapping of the interval 
(a, h) to (-co, co) has been combined with Hermite expansions to yield a method 
which, for the computation of functions with algebraic singularities, leads to a con- 
vergence rate which is exp( -v ,/%) (V > 0). Indeed, an example is included in [2] 
to show that the v for the Hermite basis is larger than the cx for the sine basis. All of 
the methods mentioned in this paragraph when applied to particular problems have 
their distinct advantages. It is in general quite difficult to assert that “method .Y is 
better than method y” with no other qualification. The ample numerical testing of a 
method, even after the convergence of the method has been established, is of 
immense value to a user who knows what is “better” or even satisfactory for his/her 
problem. Besides establishing the convergence of this sine collocation method 
(Sect, II), the examples of Section III have been selected to indicate both the 
implementation and performance of the method on problems that either have 
known solutions or have been discussed elsewhere in the literature. 

In Section II the sine function is defined and the error incured in a sine expansion 
approximate to (1.1) is developed. The present work considers only a sinc- 
collocation scheme although the connection between the latter and a Galerkin 
scheme may be found in [7] or [ 121. The difference between Lu and its sine expan- 
sion evaluated at the sine nodes gives rise to the generalized eigenvalue problem 

(1.2) 

In (1.2) A is symmetric positive definite and 9’ is a positive definite diagonal 
matrix. The remainder of Section II bounds the error (jb - pL( where ,D is an eigen- 
value of ( 1.2) and 3. is an eigenvalue of ( 1 .l ). The error in the approximate eigen- 
vector k can be carried out in a manner similar to the procedure outlined in [6] 
and is therefore not included here. 

The final Section III is devoted to the numerical method for the computation of ,D 
in (1.2). The conformal maps which handle the finite interval (a, h) and the half line 
(a = 0, h = CC ) are summarized in this section. The implementation of the method 
calls for various parameter selections. A method for the selection of these 
parameters, based on some elementary asymptotics, is carried out in this section. 
The section closes with the numerical performance of the method on a number of 
model problems. On a finite interval the equations of Fourier, Mathieu, and 
Tschebysheff are considered. On the infinite interval the radial Schrodinger 
equation with the Harmonic Oscillator, the Laguerre and the Wood-Saxon poten- 
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tials is computed. The final example, while somewhat nontypical, is included to 
further distinguish the application of the two conformal maps available for the 
(0, a) boundary value problem. 

II. SING FUNCTION APPROXIMATION 

The sine function is defined by 

sin (7rt) 
sinc( t) = ___ 

xt ’ 
tE(-cc, cc). (2.1) 

If II’ is defined on the entire real line then for h > 0 the series 

C(w, h)(r) = f dkh) S(k h)(t), (2.2) 
A= -L 

where 
t-kh 

S(k, h)(r) = sine - 
( ! h (2.3) 

is called the Whittaker Cardinal expansion of u’ whenever the series converges. A 
comprehensive survey of the approximation properties of (2.2) is contained in 
[ 13].The properties of (2.2) required for the present work will be briefly sum- 
marized in this section. 

The class of functions B( S,), d> 0, where the approximation of a function w  by 
its Cardinal expansion is characterized as follows. Let +V E B( S,) be a function which 
is analytic in the infinite strip 

SC,= (r+is: IsI <d<rr/2} (2.4) 

and satisfies each of 

and 

(Iw(t+i~)(~+Iw(t-is)12)dt <coo. 
> 

(2.6) 

An analysis of the error incurred in approximating a function w  E B(S,) by its 
Cardinal expansion is found in [13]. For the error in the eigenvalue approximation 
of this section the truncated expansion of (2.2), 

N 

C,.,(u’, h)(t) = 1 w(kh) S(k h)(t), 
k=-M 

(2.7) 
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and its second derivative 

need to be considered. If MOE B(S,) then the expansions in (2.7) and (2.8) converge 
to by and d2w/dt2, respectively. However, without further assumptions on the rate 
of growth of LV along the real line the expansions require too many terms to be of 
practical value. In this direction assume that there are positive constants x, fi and C 
so that 

Iw(r)l 6 c 
i 
exp(Ef), fE(--x,0] 
W - Pt 1, t E (0, x ). (2.9) 

If u’ E B(S,) and (2.9) is satisfied then, as shown in [ 131, the two norm error of the 
second derivative satisfies 

If the selections 

and 

h = (nd/lrM)’ 2 (2.11 ) 

are made in the right-hand side of (2.10) then the error is bounded by 

(2.12) 

(2.13) 

where K is a positive constant depending on IV and d. If in (2.9) GI = /I and the selec- 
tion in (2.11) is retained then the centered approximation 

C,(w, h)(r) = CM,M(lv, h)(t) = E w(kh) S(k, h)(t) (2.14) 
k= -,&# 

yields a second derivative approximation of d2w/dt2 which is also bounded by the 
right-hand side of (2.13). While many of the examples of the next section are more 
efficiently computed using the noncentered approximate ((2.8) with A4 # N), the 
development of the eigenvalue error estimate is notationally more convenient to 



SING FUNCTION EIGENVALUE METHOD 213 

develop using (2.14). Before turning to the eigenvalue error estimate, the following 
definition summarizes the method by which the problem (1.1) is mapped to the 
entire real line. 

DEFINITION 2.1. Let D,, be a simply connected domain in the complex z = x + iy 
plane with boundary points a # h (Fig. 1). Let d be a conformal map of Dd onto the 
infinite strip S,, in (2.4) with 4(u) = - cx; and 4(h) = co. Let the inverse map of 4 be 
denoted by $ and define 

r= ($(t): -cc<t<x~} (2.15) 

and 

Zk = $(kl?), k =O, + I,.... (2.16) 

A direct application of the methodology in [7] to (1.1) does not lead to a sym- 
metric discrete system. To symmetrize the discrete system, the change of variable 

w(tf=(J!L+$(I) (2.17) 

is made in ( 1.1 ). The resulting change of variable does not introduce a first 
derivative term in the transformed equation 

Lw(t) = -d’(t) f {y,(t)} w(t) 

= b(3(t))(ti’(r))2 4th 

lim ~(2) = 0, 
I + * -x 

(2.18) 

where 

+ hw)12 dti(t)). (2.19) 

If (2.14) is an assumed approximate solution of (2.18) then substitution of the 
former in the latter yields the equations 

FIG. 1. The map 4 and its inverse $. 
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where 

-It2 
3 ’ 

j=k 

6;+-h’$S(k, h)(t) = 
(2.21) 

I = ,h (-2)(-l)‘-” 

(j-k)’ ’ 
j#k. 

The collocation scheme defined by (2.20) has the more compact matrix represen- 
tation 

where 

LFJW, h) = Acli = m(p($‘)2) cc, (2.22) 

In (2.23) the matrix 1”’ is the m x m (m = 2M + 1) matrix whose j, kth entry is 
given by (2.21). The matrix D(f) is the m x m diagonal matrix whose diagonal 
entries are f(x,), j = - A4 ,..., 0 ,..., M and x, = ll/(jh) in (2.16). The m-vector C in 
(2.22) is (w( -M/z), w(( -M+ 1) h) ,..., w(O) ,..., w(M/z))~. 

It has been shown in [ 121 that the spectrum of -I ‘2) is contained in the interval 
(0, 7~“) independently of M. Hence if D(y,) has nonnegative entries the matrix A in 
(2.23) is a symmetric positive definite matrix. The expression in (2.19) for arbitrary 
$ and q is a bit unwieldy and for the remainder of this section it will be assumed 
that 

+y,(t)>(S(q,$,h))-‘=6 ‘>O, rE(-tE, co). (2.24) 

The quantity defined in (2.24) is explicitly worked out in Section III. It is pointed 
out there that for the maps II/ of this paper and nonnegative q that there is always a 
6 (depending only on q) so that (2.24) holds. Note that the inequality in (2.24) 
implies that 

(2.25) 

For the development of the remainder of this section the symmetry of A in (2.23) 
and the positive definiteness of D(p(ll/‘)‘) play a fundamental role. These two 
properties guarantee that the matrix eigenvalue problem (2.22) form a definite pen- 
cil [9]. This not only guarantees the existence of the matrix Z in (2.31), but 
eliminates any worry over possibly singular pencils or ill-disposed eigenvalues. 

To proceed with the development of the approximate eigenvalue problem assume 
that A, and w,(t) is an eigenpair of (2.18) where w0 is normalized by 
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Note that with the change of variable defined by (2.17) the equality in (2.26) is 
equivalent to the assumption that 

j 

h 

u;(x) p(x) d.u = 1. (2.27) 
t* 

Upon substituting H’~~ in (2.18) and evaluating at t =jh (-M< j< M) it follows 
that 

Go = n,D(p(ll/‘)2) Go, 

Subtracting (2.28) from (2.22) yields the equalities 
-- 

(2.28) 

AW” = Lc,&f(u(), h) - LM’(J 

= (A - iv,92) PO, (2.29) 

where 

9 = D(& $‘). (2.30) 

Since A and 9’ are positive definite there are eigenvectors 2, and positive eigen- 
values p, < p, ( - A4 <-i < j 6 M) so that 

Z’AZ= 

and 

(2.31) 

A!; = pi.@?,, i = - AI,..., M. (2.32) 

The independence of the {Z,} ,“= M imply that there are constants /I?; so that 

“‘() = F p;fi. (2.33) 
,=-M 

Substituting (2.33) in the right-hand side of (2.29) yields the equality 

z, = f pi(pi - &)9’Z,. (2.34) 
j= -,&f 

Taking the inner product of the eigenvector FP with each side of (2.34) shows that 

Y,TZ, = /lp(pp - A”), p = -M,..., M. (2.35) 
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Applying 9’ to both sides of (2.33) and taking the inner product of this result with 
1?‘” leads, upon using (2.32), to the identity 

where 

Assume that the eigenfunction u’~ of (2.18) is an element of B(S,) and that M’” 
satisfies the growth condition in (2.9). Application of the trapezoidal quadrature 
rule to the left-hand side of (2.26) shows that 

1 = h 2 w; (.$I Pwww’ww + 4U.w w 
,= -A4 

= h (19tioll: + E(y), M). (2.38) 

The assumptions on w0 and [13] guarantee that (E(w~, M)/hI + 0 as M-t CC so 
that, for sufhciently large M, (E(M’~, M)/h) < 1/(2/r). Hence lIGGOll: 3 1/(2/z) which, 
when combined with (2.36), yields 

Ip,I 3 (2(2M+ 1) h) ~’ 7. 

The inequality (2.24) shows that 

(2.39) 

(2.40) 

The equality in (2.31) shows that ?,! A, = II, which when substituted in the right- 
hand side of (2.40) leads to the estimate 

112,$ d 6/Q. (2.41 ) 

Assume that I, and w(, is an eigenpair of (2.18). Let p denote the index defined in 
(2.37) and assume 

Ipp-& d&. (2.42) 

The latter condition will be shown in what follows to hold for all sufficiently large 
M. If O,, is the angle between the vectors Z,, and dw, then upon taking absolute 
values in (2.35) and expanding the inner product on the left-hand side yields 

(p 
P 

_ A,, = llz,llz ll~w,ll* Icos(~,)l 
lb,1 

(2.43) 
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The inequality in (2.42) shows that 

which when substituted in (2.41) gives 

Replacing liEP[ir and Ifi,I in (2.43) by the right-hand sides of (2.45) and (2.39), 
respectively, leads to 

Ip’p-j.ol <2(((2M+ 1) h)‘,* lcos(0,)lf fi lldJZ. (2.46) 

A more convenient form for the error in (2.46) may be obtained by a short com- 
putation using (2.29) and the interpolatory property S(k, h)(jh) = a,,. This leads to 

I~r~~,,(.jh)l = IX,(~~o, h)(jh) - h,,(jh)l 

(2.47) 

Combining this identity with (2.13) shows that 

II&,/l2 d KMs14 exp( - (ndorM)“*). (2.48) 

Finally, the substitutions h = (rrd/aM)‘,*, (cos 0,,l < 1 and the right-hand side of 
(2.48) for lIdw~,J12 in (2.46) yield the error estimate 

lpp - &,I d K&Co M312 exp - (nfM4)‘~“. (2.49) 

Note in the case complimentary to (2.42) 

IP,, - 41 > &, 

that the inequality (2.43) is replaced by 

(2.50) 

P,62 b-4. (2.51) 

In this case the right-hand side of (2.45) is replaced by 26 I~P-I.Ol. Hence the 
inequality in (2.42) is the same as listed if &I2 on the right-hand side of (2.49) is 
replaced by I/lP-&l”‘. With the replacement of the previous sentence, (2.49) 
remains valid. Hence Ip,, - &I + 0 as M-+ co. While it is possible that (2.50) is 
valid for some values of M, as M increases the inequality (2.42) takes over. For the 
remainder of this paper it will be assumed that (2.42) is valid. Indeed, in all of the 
examples of the next section the inequality (2.42) is valid for all M 3 2. 

The preceding development is summarized as follows. If the change of variable 
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is made in the Sturm-Liouville problem 

-u”(X) + q(x) u(x) = Ap(x) u(x), ll<X<h, 

u(a) = u(h) = 0 

the transformed problem takes the form 

-w”(t) + r,(t) w(t) = Mll/(t))(‘Y(t))* w(t), -co<t<<, 

lim (w(t))=O, 
,-+r 

where 

Y,(t) = - (‘iw))‘~* $ i &)$ (((4w))“‘)) 
I 

+ C4w12 4($(t)) 

and the map rc/ = 4 ~ ’ is characterized in Definition 2.1. If the transformed problem 
is approximated by collocating the sine expansion 

C,.,(~‘, h)(t) = 2 ‘4kh) S(k h)(t) 
k= M 

at the trapezoidal nodes t, = ih, - A46 i < N, there results the generalized eigen- 
value problem 

{ - l/h*I’“‘+ D(Q) 5, = /AJQ($‘)~) 5;, -M<i<N 

for the approximation of the eigenvalues I. of the continuous Sturm-Liouville 
problem by pLi. 

THEOREM 2.1. Let A,, w0 be an eigenpair of the tran:formrd differential equation. 
Assume that w0 E B(S,) (wO sati$es (2.4), (2.5)) and there are positive constants c(, j, 
and C so that 

Iw(t)l d c i ;:;;y& tE(-m,O] 
t E (0, 00). 

If there is a constant 6 > 0 so that 1 y,( t)l 2 6 ~ ’ and the selections h = (nd/cM)‘i2 and 
N = [(IX//?) MJ are made then there is an eigenvalue p,, qf the generalized eigenoalue 
problem satisfying 

Ipp - I,( <K & M3/* exp( - (nd&4)“*). 

Before turning to the numerical method based on the matrix system (2.32) note 
that the matrix eigenvalue problem has 2M+ 1 eigenvalues p,. The continuous 
problem has, in general, an infinite number of eigenvalues {A,}F:O. The inequality 
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(2.46) holds for arbitrary &. Note that due to the factor & on the right-hand 
side of (2.46) one would expect that the spectral values at the lower end of the spec- 
trum to be more accurately computed than the larger spactral values. This is borne 
out in all of the examples of the next section. 

III. NUMERICAL IMPLEMENTATION 

The implementation of the numerical scheme using the matrix system (2.22) with 
the parameter selections given by (2.11) and (2.12) is developed in this section. 
Since Section II was not specific with regard to the functions q and p in (1.1) (with 
the exception of the nonnegativity assumption), this section, by way of examples, 
will indicate extensions in the application of Theorem 2.1. Indeed the motivation for 
the selection of the examples is twofold: (a) to highlight the aforementioned exten- 
sions, and (b) to give the user certain “rules of thumb’ guides in the selection of the 
parameters needed to implement the method. The latter is explored in depth for the 
(0, m) boundary value problem since there are two conformal maps which may be 
used for this case. As such, the section conveniently separates itself into the two 
cases: the interval (a, h) is finite and the interval (a, 6) = (0, co). 

The result of Theorem 2.1 is based on the assumed approximate solution (2.14) of 
the transformed boundary value problem (2.18). In terms of the given boundary 
value problem 

Lu = -u”(x) + q(x) u(x) = i+(x) u(x), 

u(a) = u(h) = 0 

the assumed approximate solution is 

a < x < h, 
(3.1) 

C,,,,,(u, h)(x) = f (qY(x,)p2 z4(Xk) S(k, h)~d(X). (3.2) 
f= -M 

The identity in (3.2) is obtained from (2.14) via r=&~) from Definition 2.1, 
.Y~ = $(/c/z) in (2.16) and (2.17). In terms of 4 the quantity y,(t) = y&d(x)) in (2.19) 
takes the form 

y,(x) = -(d(x)) 3~2((qY(x)) ‘;2)” + (qqx))-2 q(x). (3.3) 

The coefficient matrix A in (2.22) (dimension m x m (m = M + N + 1)) is defined in 
(2.23) and has been included in Fig. 2. The second line of this figure is the 
generalized eigenvalue problem whose eigenvalues are approximate eigenvalues of 
(3.1). The formula required for the construction of the matrix A for the maps 4i on 
(a, h) (i = 1, 2, 3) are also summarized in Fig. 2. A glance at the fourth column of 
the figure shows that for the first two maps the quantity y,(x) in (3.3) is bounded 
below by $. Hence, for these two maps, the quantity 6 in (2.24) and (2.49) may be 
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Interval 4 (6) ’ -(d’) J?(($$‘) I’)” 41. 

(03 b) (S-u)(h-.Y) I he”” + (I 
h - 0 4 P + 1 

(0. IX) &(.Y) = log(.v) 
I 

.Y 
4 

p 

(03 x) c+~~(.Y\-) = log(sinh(.u)) tanh(.v) 
4cosh’.y-3 

4 cash’ .X 
log[e”” + v’ 6 /+, 

FIG. 2. Discrete system used to compute the approximate eigenvalues for (3.1 ). 

replaced by four. In problems where q(x) is not nonnegative on (a, h) the method of 
Section II may still be applicable as indicated by Example 3.3. For the map 
&(x) = log(sinh(.u)) the quantity 

;l<,( s) = 
4 cosh’(.u) - 3 

cosh”(.u) 
+ (tanhI( q(.u) 

is problem dependent with respect to being bounded away from zero. However, if 
lirm_inf q(x) # 0, then there is a positive 6 so that (2.24) is satisfied. Indeed, in 
Examples 3.5 and 3.6 where the map Qj3 is used the 6 in (2.24) may be taken to be 4 
and 4, respectively. 

The assumed bound on the transformed solution 11’ in (2.9), using the change of 
variable (2.17) takes the form 

Iv% (J) u(s)1 G c i 

exp( --( I&.K)I 1, .K E I- <, 
exp( -[j ,(j(s), ), .KE l-b, 

(3.5) 

where 

r,,={$(t):tE(--,Ol), r,= it/i(t): fE(0, xc,). (3.6) 

The parameter selections 

h = (ml/c&f) ‘,’ (3.7) 

and 

(3.8) 
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are, in general, what are used for the construction of A in Fig. 2. The quantity a in 
(3.5) is determined as follows. Assume that (3.1) has at worst a regular singular 
point at a, so that 

lim (.Y - a)’ h(x) = h,, (3.9) Y - <I + 

where /z is q or p. The indicial equation for (3.1) reads 

St.7 - 1) - (4, + PC,) = 0 (3.10) 

which, since q,, + p,, > 0, has one positive root .Y+ and one negative root s_ . The 
boundary condition u(a) = 0 eliminates the root s and the selection 

cL=s+ -: (3.11) 

is used in (3.7). 
If h is finite the procedure outlined in (3.9))(3.1 I ) is used for the determination of 

p in (3.5). At this point it is convenient to distinguish two cases: h is positive 
infinity, and h is finite. In the latter case a short computation, using the map 4, in 
Fig. 2, shows that the inequality (3.5) is equivalent to 

14-x)1 d Cl 
i 

(x - a)‘+ “*, XGl-, 
(hpx)“C I/2, XEl-,. 

(3.12) 

In (3.12), reference to (3.6), shows that /-,=(a, (a+/~)/21 and f,,=((a+b)/2,h). 
In each of the first three examples the interval is finite. The exact selections of the 

parameters (3.7) (3.8), and (3.11) are included in the text of each example. The first 
two examples are regular Sturm-Liouville problems and the third example is a 
singular Sturm-Liouville problem. For all of these finite interval examples the value 
d= 71/2 is used in (3.7), i.e., the domain D,,, for 4, in Fig. 3 is a disc. 

In the displays for every example the notation .XXX - C is .xxx x 10 -“. The quan- 
titity in the second line of each display 

AER = Asymptotic Error Rate 

= exp( - (rmW4)“‘), 
(3.13) 

is taken from the right-hand side of (2.49). In a number of the displays it will be 
noted that the absolute error IpI, - E,,l is smaller than the asymptotic rate in (3.13). 
A partial explanation can be found if it is recalled that the right-hand side of (2.49) 
is obtained by replacing lcos 8,1 in (2.46) by one (0, is the angle between the 
eigenvector Z,, and the error vector dw’,). It appears (numerically) that the latter 
two vectors approach orthogonality. However, for an arbitrary problem these 
authors have not been able to establish a rate of convergence for Jcos 0,,l (-PO) as a 
function of h. To exemplify this remark the quantity 

Q = M3’* lcos Q,,/ exp( - (rr&~.M)‘~~) 



222 EGGERT, JARRATT, AND LUND 

d, ’ 

---- - / 
d,(c) = lu~(sinhc) 

FIG. 3. The domains 9, and maps I,. 

is listed under the AER heading in both of the Examples 3.4 and 3.7. These two 
examples indicate that the rate at which lcos 8,,\ approaches zero may be quite 
different. 

EXAMPLE 3.1. (Fourier) --u”(x) = k(x), u(0) = u(n) = 0. 
Here (3.12) is satisfied for t( = /I = f so that (3.7) is given by h = xl,/% and 

N= M in (3.8). The computed eigenvalues pP are obtained (see Table I) from the 
solution of the m x m (m = 2M + 1) system (a = 0, b = x for 4, in Fig. 2), 

Aq, = 
i 

Xk = 7rek’h/(ek” + 1 ), 
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TABLE I 

True 
eigenvalues 4 8 16 24 =A4 

2, 0.432-l 0.118-I 0.187-2 0.455-3 = AER 

1 0.182-I 0.659-3 0.109%5 0.37G6 
4 0.797-I 0.173-2 0.6234 
9 0.716-I 0.469-2 

16 0.94& 1 

EXAMPLE 3.2. -u”(s) + (cos’ X) U(X) = Lu(& Mathieu u(0) = u(n) = 0. 
As in the last example z = p = $, h = 7t/JM and N= M. The errors listed in 

Table II were computed using the eigenvalues listed for Mathieu’s equation in [I]. 

EXAMPLE 3.3. (Tschebyscheff) -u”(x) + (-3/4)( 1 - ,Y’))’ u(x) = E,( 1 - 
X2) ’ u(x), u( - 1) = U( 1) = 0. 

In this example q(x) = -a( 1 -x1))’ ~0 on (- 1, 1) so that the development 
leading to Theorem 2.1 is not applicable. However, the only role played by the non- 
negativity assumption q(x) 30 in Section II was in establishing the inequality 
(2.25). For the present example, reference to (3.3) and Fig. 2 shows that 

y,(x) = $ + a( 1 -X2)2 q(x) = &. 

Hence if 6 in (2.25) is replaced by 16 the remainder of Section II remains intact and 
Theorem 2.1 is applicable to this example. Indeed, for any finite interval example in 
which 

the convergence rate given by the right-hand side of (2.49) applies. Equation (3.9) 
gives q-, = -A and pP, =0 so that (3.10) and (3.11) give ~(=a. The same 

TABLE II 

True 
eigenvalues 4 8 16 24 =M 

;.,a 0,432-l 0,118-l 0.187-2 0.455-3 = AER 

IPp-4Jl 

1.24242 0.106-O 0.144-l 0.414-3 0.14&l 
4.49479 0.151-O 0.697-2 0.48 1-3 
9.50366 0.1094 0.985-2 

16.50208 0.124-O 
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procedure yields /1= t so that h = 2rc/& and N = M in (3.7) and (3.8), respec- 
tively. Note that these selections give the correct behavior of the eigensolutions (see 
Table III) 

zQ,(x) = (1 - xz)3’4 U,(x), 

& = P(P + 2) + 3/4, p = 0, 1) 2 ,...) 
(3.14) 

where U,, is the pth Tschebyscheff polynomial of the second kind. For this example 
the discrete system in Fig. 2 takes the form (a = - 1, h = - 1 for 4, in Fig. 2): 

Ai,= -1p+n 
( 

h2 (16))i,=ji,n(y)F,. -L 

Xk = (ekh - 1 )/(e”” + 1 ). 

In the case of problems (3.1) on (0, ‘CC) the inequality (3.5) is equivalent to 

(3.15) 

for the map &(x) = log(x). For the map 43(x) = log(sinh(x)) one finds 
xc I,2 

l4x)l 6 c, 
x 3 s E To = (0, log( 1 + $,] 
e /iL, .Y E f I. = (log( 1 + $,, a). 

(3.16) 

These inequalities provide the first indication of how it is decided on which (0, CC) 
map is to be used. If (3.1) has eigensolutions that decay exponentially at co, i.e., as 
x tends to infinity 

u(x) - exp( -7.x) 2’ > 0, (3.17) 

then the second inequality in (3.15) and (3.16) is satisfied on f *. . However, since 
(3.15) requires only the algebraic decay of the solution on f-I , it was shown in [6] 
that it is advantageous to replace (3.8) by the choice 

TABLE III 

True 
eigenvalues 4 8 16 24 =M 

% 0.1084 0.432-I 0.118-I 0.433-2 = AER 

IPp ~ ApI 

(3.18) 

$ 0.521-O 0,181-l 0.210-3 0.3194 

2 0.536-l 0.187-2 0.17cs3 
4 0.321- 1 0.183-2 

Y 0.381-t 
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when using map dz(x) = log(x). This selection reduces the dimension of A in Fig. 2 
and consequently yields a smaller generalized eigenvalue problem to solve for the pLp 
in A?, = pp92,. Example 3.4 is included to demonstrate the selection (3.18) in the 
case of Laguerre’s boundary value problem. 

A second criteria employed in differentiating whether to use the map dz(x) or 
d3(.x) is predicated on the behavior of the solution u of (3.1) in the right half-plane. 
If the coeflicients q and p in (3.1) are analytic in a sector of the right half-plane then 
the solution is analytic in the sector [8, p. 1451 and the map dz is in general used. If 
it is not possible to prove the analyticity of the solution of (3.1) in a sector or if the 
solution has singularities in the right half plane that are “near” the positive half line 
then the map d3 is used. This latter case is discussed in more detail in the com- 
putation of the eigenvalues for the Schrodinger equation with a Wood--Saxon 
potential in Example 3.5. Example 3.6 exhibits a boundary value problem where 
either of the maps 4, (i= 2, 3) are applicable. However, due to the assumed bound 
in (2.6) the map $3 yields a somewhat more computationally efficient scheme. 

The selection of h for all of the (0, CD) examples is given by (3.7) where CX, as in 
the finite interval case, is obtained from (3.10) and (3.11). Finally, the selection of N 
is given by (3.8) except, as in Example 3.4, when the remarks following (3.17) are 
applicable. The number fi in (3.8) is most conveniently ascertained by using the 
WKB approximation [S, p. 1911. The final Example 3.7 is less typical then the 
preceding three. It is included to exhibit a case where the rate of convergence given 
by the right-hand side of (2.49) obtains for the map d2 but, due to (3.16), cannot be 
obtained for the map bl. 

EXAMPLE 3.4. (Laguerre) -u”(x) + [(x2 + 3)/4x2] u(x) = ;(1/2x) u(x), u(0) = 
u(cc)=O. 

In this case, with a = 0 in (3.9), Eq. (3.10) becomes s(s - 1) - 3/4 = 0 so that 
.s + = 3 and from (3.11) 2 = 1. The solutions are analytic in the right half-plane so 
with rl= 7c,‘2 in (3.7) the parameter h = n/m. The WKB approximation yields for 
constant fl, 

Uj.(-~) - q exp( --U/2), x -+ +x (3.19) 

so that (3.15) is satisfied if /? > 0 and (3.16) is satisfied with fl= 1. In light of the 
comments following (3.17) the selection (3.18) i.e., 

N= ;log(2M”)+ 1 
I 

(3.20) 

is used with the map b2(x) = log(x). It should be pointed out that the errors listed 
in Table IV would be the same for the map 43 if (3.20) is replaced by (3.8) 
(N = 2M). Note, however, in the latter case that the dimension of A in Fig. 1 would 
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TABLE IV 

True 
eigenvalues 4 8 16 24 =M 

L, 0.118-l 0.187-2 0.138-3 0.1884 = AER 

0,244-l 0.197-2 0.8794 0.376-5 =Q 

I& - j.,l 

3 0,242-l O.lllL2 0.2834 0.868-6 
5 0.123-l O.lOlL2 0.4854 
7 0.172-l 0.124-2 
9 0,108-l 

be m x m where m = 13, 25, 49, 73 (M = 4, 8, 16, 24). This is to be contrasted with 
the size of A in 

xk = exp(kh) 

whichismxm(m=7, 13,23,32(m=M+N+l,M=4,8, 16,24)).Thetrueeigen- 
solutions for this example are 

lp = 2p + 3, p = 0, l)... 

As indicated in the paragraph preceeding Example 4.1, the third row in Table IV is 
the quantity Q = M3’* lcos fI,, exp( -(n&M)“‘). 

EXAMPLE 3.5. (Wood-Saxon) -u”(X) + u(x) = A( 1 + ,‘Y “!‘,) ’ U(X), U(0) = 
u(co)=O. 

Equation (3.10) with q. = p. = 0 gives s + = 1 so that x = 4. Due to the pole of 
p(x) at Y + u-ci the largest sector in which the solution can be guaranteed to be 
analytic has d= Tan-‘(Err/r). For comparison purposes ([7] and [lo]) the 

TABLE V 

True 
eigenvalues 4 8 16 24 =M 

2, 0,432-l 0.118-l 0.178-2 0.45443 = AER 
1.424333 1.427127 I .424484 1.424335 I .424333 

I.2 2.447301 2.444763 2.444707 
13 3.972775 3.972332 
4 - 5.993260 
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parameters are Y = 5.086855 and E = 0.929853. Hence if the map C&,(X) is selected d 
must be selected smaller than (approximately) 7r/6. For the domain of & in Fig. 3 
there is no such restriction on d and an inspection of the right-hand side of (2.46) 
shows a faster convergence rate for larger values of d. The correct asymptotic 
behavior of the solution is found in [4, p. 1641 

u(x) - exp( - (X - Y)/E), x-+Go. 

Hence, one may select /I = 1 in (3.16) so with a = 2 Eqs. (3.7) and (3.8) give 
/I= rc/,,/% and 2N= M, respectively. The first true eigenvalue listed in Table V has 
been computed in [7] and [lo]. The numbers listed in Table V are computed from 
matrix system 

EXAMPLE 3.6. (Harmonic Oscillator) -U”(X) + (x’ + 2x 2, U(X) = j-u(x), u(0) = 
u( x ) = 0. 

Equation (3.10) with q. = 2 and p0 = 0 gives s, = 2 so that (3.11) yields cr = 3/2. 
The asymptotic behavior of the solutions at infinity are 

u;.(x) - ‘Ix ’ ’ exp( - (x1/2)), x-32. (3.21) 

Since the coefficients are analytic in the right half-plane and both (3.15) and (3.16) 
are satisfied either of the maps 4z or #j may be employed for this example. To see 
why the map d3 is preferred, recall that the quantity N,(w) in (2.6) was required to 
be finite. The first term on the right-hand side of (2.6) for the present example takes 
the form 

N= 1 
I 

~ [w(t+i.#dr=jx B (w(t+is)(‘dt+Z, (3.22) 

where the integral I has no effect on the behavior of w  at positive infinity. If B in 
(3.22) is sufficiently large so that (3.21) may be used in (3.22) then, upon recalling 
the change of variable (2.17) 

N-I=vJ: /e ,,+,,,exp(~e2,,+,~,)~2dt 

=q.r,’ CJ ‘~exp(~e2’(cos2,s+irinZs))~*dt 

=jBx eP’iexp($r”cos2s)l’di. 
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TABLE VI 

Trlle 

eigenvalues 4 8 16 24 =M 

i., 0.433-2 0.454-3 0.1884 0.163-5 = AEM 

I/$ - 41 

5 0.831-2 0.5134 0.321-6 0.3048 
9 0.168-2 0.607-6 0.19447 

12 0.1774 0.496-7 
16 0.331-5 

The latter is finite if cos 2s > 0 or 0 < s < 7c/4. Hence, for the map dZ for this exam- 
ple select d = 7rr/4. For the map 4, one may select d = n/2 and, as in the previous 
example, the larger d governs the choice of the map. It should be remarked that the 
accuracy exhibited in Table VI could be obtained using the I$~ map but the size of 
M (and N) would be quite a bit larger. Indeed, if the results in Table VI are com- 
pared with the results in [7] (there the map #Z was used) the superiority (with 
respect to economy of computation) of the map d3 for this example is clearly seen. 

EXAMPLE 3.7. (Rational) -u”(x) + ([n(n + 1)) x2 - n]/(s’+ 1)‘) u(.u) = 
h/(x2+ l), U(0) = U( XI) = 0. 

For each integer n >, 2, this equation has a finite set of eigenvalues 
A, =j. (2n -j + 1) for j = 2i - 1 (i = 1, 2,..., [(n + 1)/2B ). Corresponding to each 
eigenvalue i., the eigensolution is given by 

(3.23) 

where Pj is a polynomial of exact degree j. An explicit representation of the P, as 
well as a number of their properties (including their relationship to the 
Tschebyscheff polynomials) is developed in [3]. 

TABLE VII 

True 
eigenvalues 4 8 16 24 =M 

4 
(n=4) 0,432-l 0.117-l 0.187-2 0.455-3 = AER 

0.2394 0.109-O 0.183-l 0.325-2 =Q 

I& - ApI 

8 0.139 + 1 0.562-O 0.615-l 0.849-2 
18 0.204 + 1 0.348-O 0,257-l 0.435-2 
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An inspection of the inequality (3.15) combined with (3.23) shows that the for- 
mer is satisfied with c( = $ (P,(X) =X for all n) and /I = n. Hence the parameters (3.7) 
and (3.8) are h = rr/@ and N= [M/212], respectively. Due to the nonexponential 
behavior of the solutions u,, in (3.23) there is no B so that (3.16) is satisfied. 
Hence, the Table VII is obtained using the map $z(x). Note that the function 
q(x) is negative on the initial segment (0, (n + 1))‘:‘) of (0, co). However, as in 
Example 3.3, 

. 4-x) 1 
%Yf ((b;(x))* ‘2 i I 

so that the results of Theorem 2.1 are applicable to this example. Finally, 
following the comments preceding Example 3.1, the quantity Q = M3’* Jcos fIPl 
exp( - (rrrdcM)“*) has been included in Table VII. 

ACKNOWLEDGMENTS 

The authors thankfully acknowledge the careful reading and helpful suggestions made by the referees. 
A thank you also goes to Mrs. Susie Gray for her patient and skillful technical typing. 

REFERENCES 

1. G. BLANCH, Tuh1e.s Rekuting TV Mathieu Func~tions (Columbia Univ. Press, New York, 1951 ), p. 24. 
2. J. P. BOYO, J. Conipur. Phyx, in press. 
3. N. EGGEKT ANL) J. LUNII, Appl. Anul. 18, 267 (1984). 
4. S. FLUGGIE, Pructical Quunlam Mechanics I (Springer-Verlag, New York, 1971). p. 162. 
5. D. COTTLIEB, AND S. A. OKSZAG, Numerical Analysis of Speclral Merhod.7: Theory and Applications 

(SIAM Philadelphia, PA, 1977). 
6. J. LUND. Math. Compur. 47, 1 (1986). 
7. J. R. LUND ANU B. V. RILEY, IMA J. Numer. Anal. 4, 83 (1984). 
8. F. W. J. OLIVER, Asympto/ics and Sprciul Funcrions (Academic Press, New York, 1974). 
9. B. N. PARLETT, Thr Symmetric Eigenculue Problem (Prentice-Hall, Englewood Cliffs, NJ, 1980), 

p. 304. 
IO. S. W. SCHOOMBIE AND J. F. BOTHA, IMA J. Numer. Awl. 1, 47 (1981). 
I I. B. W. SHOKE. J. Chem. Phys. 58, 3855 (1973). 
12. F. STCNGER. Math. Comput. 33, 85 (1979). 
13. F. STENGEK, SIAM Rev. 23, 165 (1981). 


